BLOCKCHAIN-BASED SOLUTIONS FOR ENHANCING DATA SECURITY IN CLOUD COMPUTING
Keywords:
Cloud Security, Privacy, CyberattacksAbstract
Cloud computing is becoming more popular for processing and storing data, but many people are still worried about the safety of their personal information due to the frequent occurrence of harmful attacks on mobile and wireless communication networks. In an effort to find a solution, researchers have created an IAS protocol that combines secure authentication with identity and access management. Based on blockchain technology, the proposed IAS protocol guarantees the authenticity and security of data shared in the cloud. This paves the way for decentralised management of key recovery/revocation and identity verification. Our cloud-based simulation utilises BC-IAS, which stands for Block Chain based Identity Management, Access Control, and Secure Sharing, to test the suggested approach. Energy consumption, end-to-end latency, data access rate, and message delivery ratio are among the most crucial performance characteristics that are evaluated in the simulation. Cloud security and privacy could be significantly improved by a blockchain-based technology known as BC-IAS. One approach to enhancing the privacy and security of cloud computing is the planned BC-IAS protocol, which is built on blockchain technology. Thanks to smart contracts, access control limitations may be automatically enforced, and the decentralised nature of blockchain technology makes data storage transparent and tamper-proof. Also, important data can be shielded from prying eyes by using secure authentication and identity verification, which reduces the possibility of data breaches and cyberattacks.
References
Taylor, P.J.; Dargahi, T.; Dehghantanha, A.; Parizi, R.M.; Choo, K.-K.R. A systematic literature review of blockchain cyber security. Digit. Commun. Netw. 2020, 6, 147–156. [Google Scholar] [CrossRef]
Gupta, R.; Tanwar, S.; Kumar, N.; Tyagi, S. Blockchain-based security attack resilience schemes for autonomous vehicles in industry 4.0: A systematic review. Comput. Electr. Eng. 2020, 86, 106717. [Google Scholar] [CrossRef]
Da Xu, L.; Lu, Y.; Li, L. Embedding blockchain technology into IoT for security: A survey. IEEE Internet Things J. 2021, 8, 10452–10473. [Google Scholar]
Ferrag, M.A.; Shu, L. The performance evaluation of blockchain-based security and privacy systems for the Internet of Things: A tutorial. IEEE Internet Things J. 2021, 8, 17236–17260. [Google Scholar] [CrossRef]
Shammar, E.A.; Zahary, A.T.; Al-Shargabi, A.A. A Survey of IoT and Blockchain Integration: Security Perspective. IEEE Access 2021, 9, 156114–156150. [Google Scholar] [CrossRef]
Ferrag, M.A.; Shu, L.; Yang, X.; Derhab, A.; Maglaras, L. Security and privacy for green IoT-based agriculture: Review, blockchain solutions, and challenges. IEEE Access 2020, 8, 32031–32053. [Google Scholar] [CrossRef]
Ren, J.; Li, J.; Liu, H.; Qin, T. Task offloading strategy with emergency handling and blockchain security in SDN-empowered and fog-assisted healthcare IoT. Tsinghua Sci. Technol. 2021, 27, 760–776. [Google Scholar] [CrossRef]
Sun, S.; Du, R.; Chen, S.; Li, W. Blockchain-based IoT access control system: Towards security, lightweight, and cross-domain. IEEE Access 2021, 9, 36868–36878. [Google Scholar] [CrossRef]
Medhane, D.V.; Sangaiah, A.K.; Hossain, M.S.; Muhammad, G.; Wang, J. Blockchain-enabled distributed security framework for next-generation IoT: An edge cloud and software-defined network-integrated approach. IEEE Internet Things J. 2020, 7, 6143–6149. [Google Scholar] [CrossRef]
Hsiao, S.-J.; Sung, W.-T. Employing blockchain technology to strengthen security of wireless sensor networks. IEEE Access 2021, 9, 72326–72341. [Google Scholar] [CrossRef]
Mohanta, B.K.; Jena, D.; Ramasubbareddy, S.; Daneshmand, M.; Gandomi, A.H. Addressing security and privacy issues of IoT using blockchain technology. IEEE Internet Things J. 2020, 8, 881–888. [Google Scholar] [CrossRef]
Yazdinejad, A.; Parizi, R.M.; Dehghantanha, A.; Karimipour, H.; Srivastava, G.; Aledhari, M. Enabling drones in the internet of things with decentralized blockchain-based security. IEEE Internet Things J. 2020, 8, 6406–6415. [Google Scholar] [CrossRef]
Yazdinejad, A.; Parizi, R.M.; Dehghantanha, A.; Zhang, Q.; Choo, K.-K.R. An energy-efficient SDN controller architecture for IoT networks with blockchain-based security. IEEE Trans. Serv. Comput. 2020, 13, 625–638. [Google Scholar] [CrossRef]
Zulkifl, Z.; Khan, F.; Tahir, S.; Afzal, M.; Iqbal, W.; Rehman, A.; Saeed, S.; Almuhaideb, A.M. FBASHI: Fuzzy and Blockchain-Based Adaptive Security for Healthcare IoTs. IEEE Access 2022, 10, 15644–15656. [Google Scholar] [CrossRef]
Rathore, S.; Park, J.H.; Chang, H. Deep learning and blockchain-empowered security framework for intelligent 5G-enabled IoT. IEEE Access 2021, 9, 90075–90083. [Google Scholar] [CrossRef]
Azbeg, K.; Ouchetto, O.; Andaloussi, S.J. BlockMedCare: A healthcare system based on IoT, Blockchain and IPFS for data management security. Egypt. Inform. J. 2022, 23, 329–343. [Google Scholar] [CrossRef]
Abualsauod, E.H. A hybrid blockchain method in internet of things for privacy and security in unmanned aerial vehicles network. Comput. Electr. Eng. 2022, 99, 107847. [Google Scholar] [CrossRef]
Annane, B.; Alti, A.; Lakehal, A. Blockchain based context-aware CP-ABE schema for Internet of Medical Things security. Array 2022, 14, 100150. [Google Scholar] [CrossRef]
Latif, S.A.; Wen, F.B.X.; Iwendi, C.; Li-li, F.W.; Mohsin, S.M.; Han, Z.; Band, S.S. AI-empowered, blockchain and SDN integrated security architecture for IoT network of cyber physical systems. Comput. Commun. 2022, 181, 274–283. [Google Scholar] [CrossRef]
Krishna, B.; Rajkumar, P.; Velde, V. Integration of blockchain technology for security and privacy in internet of things. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Harish Narne (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.