LML-DAP: LANGUAGE MODEL LEARNING A DATASET FOR DATA-AUGMENTED PREDICTION
Keywords:
Retrieval-Augmented Generation (RAG), In-context Learning, Context-aware Decision-making, Explainable AI (XAI), Transparency, Bias MitigationAbstract
Classification tasks are typically handled using Machine Learning (ML) models, which lack a balance between accuracy and interpretability. This paper introduces a new approach for classification tasks using Large Language Models (LLMs) in an explainable method. Unlike ML models, which rely heavily on data cleaning and feature engineering, this method streamlines the process using LLMs. This paper proposes a method called “Language Model Learning (LML)” powered by a new method called “Data-Augmented Prediction (DAP).” The classification is performed by LLMs using a method similar to that used by humans who manually explore and understand the data to decide classifications. In the process of LML, a dataset is summarized and evaluated to determine the features leading to each label the most. In the DAP process, the system uses the data summary and a row of the testing dataset to automatically generate a query to retrieve relevant rows from the dataset for context-aware classification. LML and DAP unlock new possibilities in areas that require explainable and context-aware decisions by ensuring satisfactory accuracy even with complex data. The system scored an accuracy above 90% in some test cases, confirming the effectiveness and potential of the system to outperform ML models in various scenarios. The source code used for the experiment is available at github.com/Pro-GenAI/LML-DAP.
References
Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science 2021, 2, 160, doi:10.1007/s42979-021-00592-x.
Sarker, I.H. LLM Potentiality and Awareness: A Position Paper from the Perspective of Trustworthy and Responsible AI Modeling. Discover Artificial Intelligence 2024, 4, 40, doi:10.1007/s44163-024-00129-0.
AI@Meta Llama 3.1 [Language Model] Available online: https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md.
Sun, X.; Li, X.; Li, J.; Wu, F.; Guo, S.; Zhang, T.; Wang, G. Text Classification via Large Language Models. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2023; Bouamor, H., Pino, J., Bali, K., Eds.; Association for Computational Linguistics: Singapore, December 2023; pp. 8990–9005.
Ali, S.; Abuhmed, T.; El-Sappagh, S.; Muhammad, K.; Alonso-Moral, J.M.; Confalonieri, R.; Guidotti, R.; Ser, J.D.; Díaz-Rodríguez, N.; Herrera, F. Explainable Artificial Intelligence (XAI): What We Know and What Is Left to Attain Trustworthy Artificial Intelligence. Information Fusion 2023, 99, 101805, doi:https://doi.org/10.1016/j.inffus.2023.101805.
Mori, T.; Uchihira, N. Balancing the Trade-off between Accuracy and Interpretability in Software Defect Prediction. Empirical Software Engineering 2019, 24, 779–825, doi:10.1007/s10664-018-9638-1.
Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain, A. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cognitive Computation 2024, 16, 45–74, doi:10.1007/s12559-023-10179-8.
Zhang, Y.; Tiňo, P.; Leonardis, A.; Tang, K. A Survey on Neural Network Interpretability. IEEE Transactions on Emerging Topics in Computational Intelligence 2021, 5, 726–742, doi:10.1109/TETCI.2021.3100641.
Marey, A.; Arjmand, P.; Alerab, A.D.S.; Eslami, M.J.; Saad, A.M.; Sanchez, N.; Umair, M. Explainability, Transparency and Black Box Challenges of AI in Radiology: Impact on Patient Care in Cardiovascular Radiology. Egyptian Journal of Radiology and Nuclear Medicine 2024, 55, 183, doi:10.1186/s43055-024-01356-2.
Li, F.; Ruijs, N.; Lu, Y. Ethics & AI: A Systematic Review on Ethical Concerns and Related Strategies for Designing with AI in Healthcare. AI 2023, 4, 28–53, doi:10.3390/ai4010003.
Verde, L.; Marulli, F.; Marrone, S. Exploring the Impact of Data Poisoning Attacks on Machine Learning Model Reliability. Procedia Computer Science 2021, 192, 2624–2632, doi:https://doi.org/10.1016/j.procs.2021.09.032.
Korada, L. Data Poisoning - What Is It and How It Is Being Addressed by the Leading Gen AI Providers? European Journal of Advances in Engineering and Technology 2024, 11, 105–109, doi:10.5281/zenodo.13318796.
Press, G. Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says Available online: https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/.
Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Küttler, H.; Lewis, M.; Yih, W.; Rocktäschel, T.; et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In Proceedings of the Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc., 2020; Vol. 33, pp. 9459–9474.
Awad, M.; Khanna, R. Machine Learning. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Awad, M., Khanna, R., Eds.; Apress: Berkeley, CA, 2015; pp. 1–18 ISBN 978-1-4302-5990-9.
Manikandan, H.; Jiang, Y.; Kolter, J.Z. Language Models Are Weak Learners. In Proceedings of the Advances in Neural Information Processing Systems; Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S., Eds.; Curran Associates, Inc., 2023; Vol. 36, pp. 50907–50931.
Zamani, H.; Diaz, F.; Dehghani, M.; Metzler, D.; Bendersky, M. Retrieval-Enhanced Machine Learning. In Proceedings of the Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval; Association for Computing Machinery: New York, NY, USA, 2022; pp. 2875–2886.
Kim, T.E.; Salemi, A.; Drozdov, A.; Diaz, F.; Zamani, H. Retrieval-Enhanced Machine Learning: Synthesis and Opportunities 2024.
Kim, J.; Shim, C.; Yang, B.S.K.; Im, C.; Lim, S.Y.; Jeong, H.-G.; Choi, E. General-Purpose Retrieval-Enhanced Medical Prediction Model Using Near-Infinite History 2024.
Kelly, M.; Longjohn, R.; Nottingham, K. The UCI Machine Learning Repository Available online: https://archive.ics.uci.edu.
Team, G.; Georgiev, P.; Lei, V.I.; Burnell, R.; Bai, L.; Gulati, A.; Tanzer, G.; Vincent, D.; Pan, Z.; Wang, S.; et al. Gemini 1.5: Unlocking Multimodal Understanding across Millions of Tokens of Context 2024.
OpenAI GPT-4o Mini [Language Model] Available online: https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.