INTRODUCTION TO FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
Keywords:
Differential Equations, FPDEs, Fractional Partial Integrals, DerivativesAbstract
This paper presents a New Analytical Technique (NAT) for solving nonlinear Frac¬tional Partial Differential Equations (FPDEs) and nonlinear systems of FPDEs. Moreover, the convergence theorem and error analysis of the proposed technique are shown. An¬alytical and numerical solutions for several examples of nonlinear FPDEs and nonlinear systems of FPDEs are obtained in forms of tables and graphs
References
R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh. A new definition of fractional derivative. J. Comput. Appl. Math., 264:65–70, jul 2014.
Y. Çenesiz, D. Baleanu, A. Kurt, and O. Tasbozan. New exact solutions of Burgers’ type equations with conformable derivative. Waves Random and Complex Media, 27(1):103–116, 2017
K. Hosseini, P. Mayeli, and R. Ansari. Modified Kudryashov method for solving the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities. Opt. - Int. J. Light Electron Opt., 130(1):737–742, 2017.
H. Rezazadeh, A. Korkmaz, M. Eslami, J. Vahidi, and R. Asghari. Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method. Opt. Quantum Electron., 50(3), 2018.
F. S. Khodadad, F. Nazari, M. Eslami, and H. Rezazadeh. Soliton solutions of the conformable fractional Zakharov–Kuznetsov equation with dual-power law nonlinearity. Opt. Quantum Electron., 49(11):1–12, 2017.
E. M. E. Zayed, Y. A. Amer, and R. M. A. Shohib. The fractional complex transformation for nonlinear fractional partial differential equations in the mathematical physics. J. Assoc. Arab Univ. Basic Appl. Sci., 19:59–69, 2016.
S. Momani and Z. Odibat. Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A, 365(5-6):345–350, 2007.
A. El-Sayed, A. Elsaid, I. El-Kalla, and D. Hammad. A homotopy perturbation technique for solving partial differential equations of fractional order in finite domains. Appl. Math. Comput., 218(17):8329–8340, 2012.
Z. Odibat and S. Momani. Numerical methods for nonlinear partial differential equations of fractional order. Appl. Math. Model., 32(1):28–39, 2008.
T. Bakkyaraj and R. Sahadevan. Approximate analytical solution of two coupled time fractional nonlinear Schrödinger equations. Int. J. Appl. Comput. Math., 2(1):113– 135, 2015.
Z. Ouyang. Existence and uniqueness of the solutions for a class of nonlinear fractional order partial differential equations with delay. Comput. Math. with Appl., 61(4):860–870, 2011.
R. Ke, M. K. Ng, and H. W. Sun. A fast direct method for block triangular Toeplitzlike with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys., 303:203–211, 2015.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Dr. Kruti K. Lad (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.