EXPERIMENTAL INVESTIGATION OF THE PERFORMANCE OF RUBBERIZED CONCRETE MIXTURES WITHOUT ADDITIVES
Keywords:
Crumb Rubber, Concrete Matrix, Waste Tire RubberAbstract
Modern urbanization has contributed to an increase in the number of vehicles, resulting in lots of tires ending up as waste every day. It is estimated that almost 1,000 million tires reach the end of their useful life every year, with more than half of them being disposed of without being treated. One approach for making good use of discarded tire rubber is to incorporate it into cement-based materials as natural aggregate substitutes. In this work, scrap tire rubber was used as a partial replacement for coarse aggregates in normal cement concrete in the form of crumb rubber. Three different sizes of crumb tires were used in this experiment - 25.4mm (1 in) x 5mm (0.2in) x 5 mm (0.2in), 50.8 mm (2 in) x 5mm (0.2in) x 5mm (0.2in) and 76.2 mm (3 in) x 5mm (0.2in) x 5 mm (0.2in). The mix design consists of 15% of coarse aggregate content replaced by the crumb rubbers in a mix ratio of 1: 1/2: 31/2: 2: 0.001 by weight, corresponding to cement: water: gravel: sand: Sika® AIR content. Tests were conducted to determine the compressive, tensile, modulus, and air content of the concrete samples. From the test results, it could be concluded that the rubberized concrete produced higher toughness, delayed crack opening width, and ductile failure even though it had lower compressive and tensile strength than the control mix. The geometry and stiffness of the fibers had an influence on the strength of the modified concrete and the increasing aspect ratio of the crumb rubber fibers improved the post-cracking behavior of the concrete matrix.
References
A. A. Aliabdo, A. E. M. Abd Elmoaty, and A. Y. Aboshama, “Utilization of waste glass powder in the production of cement and concrete,” Constr. Build. Mater., vol. 124, pp. 866–877, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2016.08.016.
G. M. S. Islam, M. H. Rahman, and N. Kazi, “Waste glass powder as partial replacement of cement for sustainable concrete practice,” Int. J. Sustain. Built Environ., vol. 6, no. 1, pp. 37–44, 2017, doi: https://doi.org/10.1016/j.ijsbe.2016.10.005.
K. L. Jain, G. Sancheti, and L. K. Gupta, “Durability performance of waste granite and glass powder added concrete,” Constr. Build. Mater., vol. 252, p. 119075, 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.119075.
B. Balasubramanian, G. V. T. Gopala Krishna, V. Saraswathy, and K. Srinivasan, “Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic,” Constr. Build. Mater., vol. 278, p. 122400, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.122400.
F. A. Khan, K. Shahzada, Q. S. Ullah, M. Fahim, S. W. Khan, and Y. I. Badrashi, “Development of environment-friendly concrete through partial addition of waste glass powder (Wgp) as cement replacement,” Civ. Eng. J., vol. 6, no. 12, pp. 2332–2343, 2020, doi: 10.28991/cej-2020-03091620.
R. Wei and Y. Sakai, “Experimental investigation on bending strength of compacted plastic-concrete,” Resour. Conserv. Recycl., vol. 169, p. 105521, 2021, doi: https://doi.org/10.1016/j.resconrec.2021.105521.
M. Abu-Saleem, Y. Zhuge, R. Hassanli, M. Ellis, M. Rahman, and P. Levett, “Evaluation of concrete performance with different types of recycled plastic waste for kerb application,” Constr. Build. Mater., vol. 293, p. 123477, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.123477.
I. Almeshal, B. A. Tayeh, R. Alyousef, H. Alabduljabbar, and A. M. Mohamed, “Eco-friendly concrete containing recycled plastic as partial replacement for sand,” J. Mater. Res. Technol., vol. 9, no. 3, pp. 4631–4643, 2020, doi: https://doi.org/10.1016/j.jmrt.2020.02.090.
E. del Rey Castillo, N. Almesfer, O. Saggi, and J. M. Ingham, “Light-weight concrete with artificial aggregate manufactured from plastic waste,” Constr. Build. Mater., vol. 265, p. 120199, 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.120199.
I. H. Aziz, M. M. A. B. Abdullah, M. A. A. Mohd Salleh, E. A. Azimi, J. Chaiprapa, and A. V. Sandu, “Strength development of solely ground granulated blast furnace slag geopolymers,” Constr. Build. Mater., vol. 250, p. 118720, 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.118720.
A. Kandiri, E. Mohammadi Golafshani, and A. Behnood, “Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm,” Constr. Build. Mater., vol. 248, p. 118676, 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.118676.
A. Mehta, R. Siddique, T. Ozbakkaloglu, F. Uddin Ahmed Shaikh, and R. Belarbi, “Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties,” Constr. Build. Mater., vol. 257, p. 119548, 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.119548.
T. Ahmed, M. Elchalakani, A. Karrech, M. S. Mohamed Ali, and L. Guo, “Development of ECO-UHPC with very-low-C3A cement and ground granulated blast-furnace slag,” Constr. Build. Mater., vol. 284, p. 122787, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.122787.
L. Lang, B. Chen, and N. Li, “Utilization of lime/carbide slag-activated ground granulated blast-furnace slag for dredged sludge stabilization,” Mar. Georesources Geotechnol., vol. 39, no. 6, pp. 659–669, 2021, doi: 10.1080/1064119X.2020.1741050.
K. Arunkumar, M. Muthukannan, A. Dinesh Babu, A. L. Hariharan, and T. Muthuramalingam, “Effect on addition of Polypropylene fibers in wood ash-fly ash based geopolymer concrete,” IOP Conf. Ser. Mater. Sci. Eng., vol. 872, no. 1, pp. 0–9, 2020, doi: 10.1088/1757-899X/872/1/012162.
Z. Hamid and S. Rafiq, “An experimental study on behavior of wood ash in concrete as partial replacement of cement,” Mater. Today Proc., vol. 46, pp. 3426–3429, 2021, doi: https://doi.org/10.1016/j.matpr.2020.11.776.
J. A. Bhat, “Mechanical behaviour of self compacting concrete: Effect of wood ash and coal ash as partial cement replacement,” Mater. Today Proc., vol. 42, pp. 1470–1476, 2021, doi: https://doi.org/10.1016/j.matpr.2021.01.311.
A. M. Mhaya, G. Fahim Huseien, I. Faridmehr, A. Razin Zainal Abidin, R. Alyousef, and M. Ismail, “Evaluating mechanical properties and impact resistance of modified concrete containing ground Blast Furnace slag and discarded rubber tire crumbs,” Constr. Build. Mater., vol. 295, p. 123603, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.123603.
S. U. Khan, A. Ahmed, S. Ali, A. Ayub, A. Shuja, and M. A. Shahid, “Use of scrapped rubber tires for sustainable construction of manhole covers,” J. Renew. Mater., vol. 9, no. 5, pp. 1013–1029, 2021, doi: 10.32604/jrm.2021.014344.
J. Yarlagadda, A. Ravuru, P. Voduri, I. S. H. Chaitanya, and P. Murali Manohar, “A study on improving tire pyrolysis oil quality by blending it with biodiesels derived from edible oils,” Int. J. Ambient Energy, vol. 0, no. 0, pp. 1–12, 2020, doi: 10.1080/01430750.2020.1772873.
T. Santiago Gomes, G. Rezende Neto, A. Claudia Nioac de Salles, L. Lea Yuan Visconte, and E. Beatriz Acordi Vasques Pacheco, “End-of-Life Tire Destination from a Life Cycle Assessment Perspective,” in New Frontiers on Life Cycle Assessment - Theory and Application, IntechOpen, 2019. doi: 10.5772/intechopen.82702.
A. A. Zabaniotou and G. Stavropoulos, “Pyrolysis of used automobile tires and residual char utilization,” J. Anal. Appl. Pyrolysis, vol. 70, no. 2, pp. 711–722, 2003, doi: https://doi.org/10.1016/S0165-2370(03)00042-1.
J.-W. Jang, T.-S. Yoo, J.-H. Oh, and I. Iwasaki, “Discarded tire recycling practices in the United States, Japan and Korea,” Resour. Conserv. Recycl., vol. 22, no. 1, pp. 1–14, 1998, doi: https://doi.org/10.1016/S0921-3449(97)00041-4.
P. Sukontasukkul, S. Jamnam, K. Rodsin, and N. Banthia, “Use of rubberized concrete as a cushion layer in bulletproof fiber reinforced concrete panels,” Constr. Build. Mater., vol. 41, pp. 801–811, 2013, doi: https://doi.org/10.1016/j.conbuildmat.2012.12.068.
F. Liu, G.-X. Chen, and L.-J. Li, “Dynamic behavior of crumb rubber concrete subjected to repeated impacts,” World Congr. Adv. Struct. Eng. Mech. Jeju, Korea, pp. 2423–2434, 2013.
K. E. K. A. Abdulshafi, “Modifiers For Asphalt Concrete,” Modif. Asph. Concr. Resour. Int. INC Westerv. OH., 1988.
P. S. Kandhal, “Waste materials in hot mix asphalt - an overview,” ASTM Spec. Tech. Publ., no. 1193, pp. 3–16, 1993, doi: 10.1520/stp19841s.
J. Ye, C. Cui, J. Yu, K. Yu, and J. Xiao, “Fresh and anisotropic-mechanical properties of 3D printable ultra-high ductile concrete with crumb rubber,” Compos. Part B Eng., vol. 211, p. 108639, 2021, doi: https://doi.org/10.1016/j.compositesb.2021.108639.
M. Sambucci and M. Valente, “Influence of waste tire rubber particles size on the microstructural, mechanical, and acoustic insulation properties of 3d-printable cement mortars,” Civ. Eng. J., vol. 7, no. 6, pp. 937–952, 2021, doi: 10.28991/cej-2021-03091701.
M. K. Mohan, A. V Rahul, G. De Schutter, and K. Van Tittelboom, “Early age hydration, rheology and pumping characteristics of CSA cement-based 3D printable concrete,” Constr. Build. Mater., vol. 275, p. 122136, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2020.122136.
A. M. Aly, M. S. El-Feky, M. Kohail, and E.-S. A. R. Nasr, “Performance of geopolymer concrete containing recycled rubber,” Constr. Build. Mater., vol. 207, pp. 136–144, 2019, doi: https://doi.org/10.1016/j.conbuildmat.2019.02.121.
A. Sathonsaowaphak, P. Chindaprasirt, and K. Pimraksa, “Workability and strength of lignite bottom ash geopolymer mortar,” J. Hazard. Mater., vol. 168, no. 1, pp. 44–50, Aug. 2009, doi: 10.1016/j.jhazmat.2009.01.120.
I. B. Topçu, “The properties of rubberized concretes,” Cem. Concr. Res., vol. 25, no. 2, pp. 304–310, 1995, doi: https://doi.org/10.1016/0008-8846(95)00014-3.
M. Medine, H. Trouzine, J. B. De Aguiar, And H. Djadouni, “Life Cycle Assessment of Concrete Incorporating Scrap Tire Rubber: Comparative Study.,” Nat. Technol. / Nat. Technol., no. 23, pp. 1–11, 2020, [Online]. Available: http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=144607458&lang=pt-br&site=ehost-live
A. Siddika, M. A. Al Mamun, R. Alyousef, Y. H. M. Amran, F. Aslani, and H. Alabduljabbar, “Properties and utilizations of waste tire rubber in concrete: A review,” Constr. Build. Mater., vol. 224, pp. 711–731, 2019, doi: https://doi.org/10.1016/j.conbuildmat.2019.07.108.
A. Kashani, T. D. Ngo, P. Hemachandra, and A. Hajimohammadi, “Effects of surface treatments of recycled tyre crumb on cement-rubber bonding in concrete composite foam,” Constr. Build. Mater., vol. 171, pp. 467–473, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.03.163.
Y. Li, S. Zhang, R. Wang, and F. Dang, “Potential use of waste tire rubber as aggregate in cement concrete – A comprehensive review,” Constr. Build. Mater., vol. 225, pp. 1183–1201, 2019, doi: https://doi.org/10.1016/j.conbuildmat.2019.07.198.
N. Banthia and O. Onuaguluchi, “Recycling Scrap Tire-Derived Fibers in Concrete,” Trans. Indian Natl. Acad. Eng., vol. 7, no. 1, pp. 207–217, 2022, doi: 10.1007/s41403-021-00257-4.
A. R. Khaloo, M. Dehestani, and P. Rahmatabadi, “Mechanical properties of concrete containing a high volume of tire–rubber particles,” Waste Manag., vol. 28, no. 12, pp. 2472–2482, 2008, doi: https://doi.org/10.1016/j.wasman.2008.01.015.
K. A. Stallings, S. A. Durham, and M. G. Chorzepa, “Effect of cement content and recycled rubber particle size on the performance of rubber-modified concrete,” Int. J. Sustain. Eng., vol. 12, no. 3, pp. 189–200, May 2019, doi: 10.1080/19397038.2018.1505971.
M. A.- Fadhli, “Properties of Concrete Containing Scrap-Tire Rubber,” Int. J. Eng. Res. Appl., vol. 07, no. 03, pp. 36–42, 2017, doi: 10.9790/9622-0703023642.
S. N. R. Shah, F. W. Akashah, and P. Shafigh, “Performance of High Strength Concrete Subjected to Elevated Temperatures: A Review,” Fire Technol., vol. 55, no. 5, pp. 1571–1597, 2019, doi: 10.1007/s10694-018-0791-2.
D. V Bompa and A. Y. Elghazouli, “Bond-slip response of deformed bars in rubberised concrete,” Constr. Build. Mater., vol. 154, pp. 884–898, 2017, doi: https://doi.org/10.1016/j.conbuildmat.2017.08.016.
M. Elchalakani, M. F. Hassanein, A. Karrech, S. Fawzia, B. Yang, and V. I. Patel, “Experimental tests and design of rubberised concrete-filled double skin circular tubular short columns,” Structures, vol. 15, pp. 196–210, 2018, doi: https://doi.org/10.1016/j.istruc.2018.07.004.
N. Segre and I. Joekes, “Use of tire rubber particles as addition to cement paste,” Cem. Concr. Res., vol. 30, no. 9, pp. 1421–1425, 2000, doi: https://doi.org/10.1016/S0008-8846(00)00373-2.
L. He, Y. Ma, Q. Liu, and Y. Mu, “Surface modification of crumb rubber and its influence on the mechanical properties of rubber-cement concrete,” Constr. Build. Mater., vol. 120, pp. 403–407, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2016.05.025.
N.-P. Pham, A. Toumi, and A. Turatsinze, “Rubber aggregate-cement matrix bond enhancement: Microstructural analysis, effect on transfer properties and on mechanical behaviours of the composite,” Cem. Concr. Compos., vol. 94, pp. 1–12, 2018, doi: https://doi.org/10.1016/j.cemconcomp.2018.08.005.
O. Onuaguluchi, “Effects of surface pre-coating and silica fume on crumb rubber-cement matrix interface and cement mortar properties,” J. Clean. Prod., vol. 104, pp. 339–345, 2015, doi: https://doi.org/10.1016/j.jclepro.2015.04.116.
O. Youssf et al., “Influence of mixing procedures, rubber treatment, and fibre additives on rubcrete performance,” J. Compos. Sci., vol. 3, no. 2, 2019, doi: 10.3390/jcs3020041.
B. Abdelhak, M. Noureddine, and M. Hacen, “Improvement of the Interfacial Adhesion Between Fiber and Matrix,” Mech. Mech. Eng., vol. 22, no. 4, pp. 885–894, Dec. 2018, doi: 10.2478/mme-2018-0069.
C. Bing and L. Ning, “Experimental Research on Properties of Fresh and Hardened Rubberized Concrete,” J. Mater. Civ. Eng., vol. 26, no. 8, Aug. 2014, doi: 10.1061/(ASCE)MT.1943-5533.0000923.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Steve Efe, Ifeyinwa Ekeke, Opeyemi Fadipe (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.